SketchUML

A Tablet PC-based e-Learning Tool for UML Syntax using a Minimalistic Interface

Bastian Tenbergen*, Colleen Grieshaber, Lisa Lazzaro, Rick Buck

{ tenberge | lazzaro | buck } @ oswego.edu
colleen_grieshaber @ yahoo.com

* presenting and corresponding author

Human-Computer Interaction Laboratory
Interactive Learning Technology Laboratory
Oswego State University, NY, USA

Project Websites:
http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Outline

- Traditional Interfaces
- Minimalistic Interfaces
- Naturalistic Interfaces
- Tablet PC-based Education
- SketchUML
- Usability Study
- Results
- Discussion

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Traditional Interfaces

- Computers play an important role in education
 - Computer-aided design helps in understanding development processes
 - Also eases instruction of certain (mostly computer science and graphic design related) topics
- Mostly traditional screen-and-mouse interfaces
 - Packed screens

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
```java
package edu.oswego.hci.hci530.betrecommender;

import java.io.File;

public class Engine { // implements MLPs {
    private Layer input;
    private Layer hidden;
    private Layer output;
    private Vector features;

    public Engine(String file) throws FileNotFoundException {
        features = new Vector();
        int maxValue = 0;
        // load & parse file
        Scanner sr = new Scanner(new File(file)).useDelimiter("\n");
        while (sr.hasNextLine()) {
            // now parse each column in row
            String row = sr.nextLine();
            StringTokenizer st = new StringTokenizer(row);
            int[] featureVector = new int[st.countTokens()];
```
Traditional Interfaces

- **Problem:**
 Many applications to aid in development/design processes like
 - IDEs (Eclipse, Netbeans, #Develop, ...)
 - Design Tools (Illustrator, Flash, Photoshop, ...)
 - CGI Applications (AutoCAD, Inventor, ...)
 have no support for learners!
 - No “Beginner Mode”
 - No Wizards
 - No feedback when a design concept is wrong
 - No context-sensitive assistance
 (with few exceptions)

- **High Learning Curve!**

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Minimalistic Interfaces

- Minimalistic Interfaces can do a better job
 - No confusion on “what means what”
 - Clear outline of elements
 - Easy-to-understand symbols

- Allow for
 - Learning by doing
 - Undoing the previous step
 - Incremental learning process

- But, potentially still some problems...

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Minimalistic Interfaces

- Potential Problems:
 - Learning curve still high
 (although not as high as with fully-featured applications)
 - Wrong concepts might be learned
 - No context-sensitive help

- Most significant:
 - Lack of features in most applications with minimalistic interfaces!

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Naturalistic Interfaces

- Non-Naturalistic Interfaces
 - Don't introduce mapping between action and reaction
 - on/off switch for a pump, furnace, etc
 - Eject button on your VCR

- Naturalistic Interfaces
 - Allow for direct or indirect mapping of action and reaction

- Inferred Naturalism vs Direct Naturalism

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Naturalistic Interfaces

- Inferred Naturalism
 Indirect mapping of action and reaction
 - Arrow Keys
 - Mouse
 - Joystick

Map an action on the interface to some corresponding re-action on the display:
 - Right arrow means right
 - Mouse up means up
 - Joystick down-right means down-right

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Naturalistic Interfaces

- Direct Naturalism
 Direct mapping of action and reaction
 Mostly used in Direct Manipulation Paradigms
 - Virtual Reality Glove
 - Nintendo Wii Controller
 - Touch Screens
 - PDA Stylus
 - Tablet PC Pen

Map an action on the interface to identical action on the display

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Tablet PC-based Education

- Pen/Stylus is a direct naturalistic interface
 - Only when used to draw ink in ink-enabled applications

- Allows for a multitude in educational advances for:
 - Faculty
 Can interact with screen content more directly to show complex interaction of concepts
 - For instance: TabCon (Concurrency Teaching Utility for Tablet PCs)

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Tablet PC-based Education

- Allows for a multitude in educational advances for:
 - Students
 - Can **explore** the program without having to figure out the controls first
 - **Collaborative learning** allows feedback from peers and instructors
 - **Mobility** allows to learn anywhere (as opposed to tablet-peripheries)

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
SketchUML

- Goal:
 Combine the advantages of
 - Minimalistic Interfaces
 - Naturalistic Interfaces
 - Tablet PCs
 to provide a good learning experience when learning complex design tasks.

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
SketchUML

- Designed to facilitate learning the UML syntax
- Allows to draw ink on blank canvas
- Program converts it into valid UML
 - Only if gesture corresponds to UML component

- Context Sensitive help
- Allows for self-guided learning
 - Without complex algorithms to supervise learning
 - Can easily be ported to other design concepts

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
SketchUML

- A short demonstration...

- You can also check out our demo video:
 http://www.youtube.com/watch?v=clF6_S-xJq

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Usability Study

• Purpose:
 – Investigate the performance and potential pitfalls of applications that employ minimalistic and naturalistic interfaces
 – Investigate the ability of naturalistic interfaces to mimic non-digital interfaces
 – Find out how computer-aided design principles can be exploited to facilitate learning when employed in these interfaces

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Usability Study

- **Participants:**
 - 11 students of Northeastern US college
 - Enrolled in software engineering class
 - Mediocre knowledge of UML

- **Apparatus:**
 - 6 HP Compaq TC4200 Tablet PCs
 - 1.7GHz CPU
 - 512mb Memory
 - SketchUML pre-release version

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Usability Study

● Procedure:
 - 1. pre-test demographic questionnaire
 - 2. introduction to SketchUML on projector
 - 3. separated participants into two groups
 - 4. handed out task description depending on participants group
 • Two different tasks
 • Tasks designed to incorporate every feature of SketchUML at least once
 • Tasks were text only – students had to invent diagram given the task description!
 - 5. Post-test questionnaire on perceived experience

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Usability Study

- Experiment was not timed
- Participants were free to start over as often as necessary
- When finished, diagrams were stored using SketchUML's built-in export function

- Performance was recorded by conducting a task performance analysis
 - Measure number of erroneous steps made in the final diagram against an ideal solution.

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Results

First condition – Group 1
(participants asked to create a diagram)

- Overall of 9 mistakes in 6 participants
- 21 steps to complete the task (minimum)
- Only 1 mistake in symbol manipulation
- Majority of 8 mistakes when manipulating labels with handwriting!!

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Results

Second condition – Group 2
(participants asked to critique diagram)

- 16 mistakes by 6 participants
 (3.2 mistakes/participant)
- 7 steps minimally to complete the task
- Majority of mistakes made during label and connector manipulation

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Results

Post-Test Questionnaire

- Students reported high satisfaction with product interaction
- Frustration only occurred when handwriting was recognized incorrectly
- Context-sensitive gesture recognition was perceived as easy to understand and learn

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Discussion

- Gesture recognition did not cause problems!
 - Minimalistic naturalistic interfaces can rely on this mode of interaction
- Context-sensitive functionality increased learning experience

- Poor handwriting recognition performance caused frustration and inhibited learning
 - That's Microsoft's Problem... not ours ;-)

http://moxie.cs.oswego.edu/~tenberge/SketchUML
http://sketchuml.tenbergen.org
Discussion

- Minimalistic Interfaces do not inhibit functionality and learning!
- Naturalistic Interfaces can increase learning experience
 - In complex design concepts
 - Help to focus on design task rather than the interface
 - Collaborative learning can enhance this effect
 - Unobtrusive!
Acknowledgements

- This project is made possible by the generous support of
 - Dr. Gary Klatsky
 - Dr. Douglas Lea (both at SUNY Oswego)
 - Dr. Lin Qiu (formerly at SUNY Oswego)
 - The Research Foundation of SUNY

- And through the generous funding of the

Hewlett-Packard Development Company, L.P., HP Technology for Teaching Grant Number U06TFH0037C.
SketchUML Project Site

Be sure to check out:

http://moxie.cs.oswego.edu/~tenberge/SketchUML

http://sketchuml.tenbergen.org

Demo Video:

http://www.youtube.com/watch?v=clF6_S-xJqs