Music Similarity Clustering

A Content-Based Approach in Clustering Music Files According to User Preference

Thesis-Project for the Degree

Bachelor of Science in Cognitive Science

Bastian Tenbergen
(tenberge@oswego.edu)

Human Computer Interaction M.A. Program
Oswego State University

formerly

Cognitive Science B.Sc. Program
University of Osnabrück, Germany
Outline

• Introduction
 – Related Work
 – This approach

• Clustering Music Files
 – Feature Extraction using GAs
 – Similarity Clustering using SOMs
 – Implementation

• Experiments
 – Experimental Set-up
 – Results

• Discussion

• Future Work
1. Introduction

- Large number of music files on end-user computers

- Acquired by
 - network based peer-to-peer networks
 - Music online stores
 - Internet radio stations (i.e. Pandorra)

- Problems:
 - Keeping an overview over the database
 - Disambiguating information on mutual database
 - Information retrieval for new and/or unknown files
1.1 Related Work

• Many researchers have addressed these problems

• Many different approaches

• Two basic forms:

 – Pre-interpreted music representation
 • MIDI-files, scores, etc.

 – Real world audio data / raw data
 • Mp3, CDDA, ogg-VOBIS, flac, etc.
1.1 Related Work

- Two basic approaches:
 - Mathematical / statistical approach
 • (Mierswa & Morik, 2005; Pardo et al., 2004)
 - Neurophysiological approach
 • (Tzanetakis, Essl & Cook, 2001)

- Both possibly involving neural networks
 • (Schedl, Pampalk & Widmer, 2004)
1.1 Related Work

- Query-by-humming approach
 - Synthetic error model vs Singer based error model

 Good results, even with synthetic error model

- Problems:
 - MIDI files rather uncommon
 - Poor singing ability of user

Pardo et al., 2004
1.1 Related Work

• Genre Classification
 – Genetic Algorithm searches for optimal feature extraction method
 – Support Vector Machine classifies genres:
 • pop/classic, pop/techno, pop/hiphop

• Very Good Results!
• Uses real-world Mp3 files!

• Problem:
 – Very slow

Mierswa, & Morik, 2005
1.2 This Approach

- To the best of my knowledge, no research has been conducted that aims at dividing music files into preference groups.

- similarity measurement necessary
- How represent files?

 -> Extract Features.

- What features should be extracted?
1.2 This Approach

- Use GA approach of Mierswa and Morik

- Given a vector representation of files:
 - Similar files are closer to each other in vector space
 - **Problem:** Vector space of very high dimensionality
 -> curse of dimensionality

- More Problems:
 - Similarity clustering is ill-defined!
 - Number and size of clusters not known a priori
1.2 This Approach

- Special requirements for framework:
 - Deal with high dimensional data
 - Simplify high dimensional data
 - Deal with no a priori knowledge

- SVM not suitable
 - Classes not pre-defined

- Solution: **Self-Organizing Map**
 - maps high dimensional data on low dimensional representation
 - Number of clusters emerges from training
2. Clustering Music Files

Goals:

- Find music that a user likes
 - Do so on the basis of the content, not meta data

- Structure a music database
 - On basis other than genres, artists, albums

- Disambiguate a music database
 - Filter duplicates, retrieve info for songs

- Narrow search space for manual comparison
2. Clustering Music Files

Considerations:

- The larger the variety of genre and style, the larger the scope and variety of features

 -> different features might be necessary for different songs

- Number of clusters emerges from training

 -> the more songs in the corpus, the more clusters might be found
2.1 Feature Extraction using GAs

- Use Genetic Algorithm to find ideal feature extraction algorithm on the basis of a given test corpus
 - Idea adopted from Mierswa and Morik, **but corpus not pre-structured**
- Result is a extraction algorithm
- Extraction algorithm creates feature vector for each song
2.2 Similarity Clustering using SOMs

- Feature-vectors with d dimensions
 - Depending on the amount of extraction methods in the extraction algorithm
 - Each extraction method is one dimension

- Nice side effect: visualize input space
2.3 Implementation

- Plug-in for the Machine Learning Environment “YALE”

- Input:
 - Source folder of music files
 (MPEG Layer III at 44.1KHz, see ISO/IEC11172-3)
 - Query File
 (file in the source folder according to which clustering is performed)
 - Settings for GA and SOM

- Output:
 - Feature vector file
 - A list of music files in the same cluster as the Query File
Exception
PerceptronInput
Exception
if input and weight not equally long

Object
Perceptron
represents neurons

Object
Layer
output layer of SOM

Object
SOM
runs classification

Object
Cluster
represents similarity clusters

Object
SOMInput
interacts with Yale

Object
SOMFileHandler
retrieves patterns from input file

Class
OperatorTools
provides result format

Class
Tools
standard utilities

Object
Distance
measures distances
weights <-> input vectors
<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Vector File</td>
<td></td>
</tr>
<tr>
<td>Query Input File</td>
<td></td>
</tr>
<tr>
<td>Number Neuron-Columns</td>
<td>7</td>
</tr>
<tr>
<td>Number Neuron-Rows</td>
<td>5</td>
</tr>
<tr>
<td>Closed Topology</td>
<td></td>
</tr>
<tr>
<td>Training Runs</td>
<td>1,000</td>
</tr>
<tr>
<td>Learning Rate Winner</td>
<td>1</td>
</tr>
<tr>
<td>Learning Rate Neighbor</td>
<td>0,25</td>
</tr>
<tr>
<td>Maximal Value</td>
<td>-1</td>
</tr>
<tr>
<td>Metric</td>
<td>Euclidean</td>
</tr>
<tr>
<td>Filter Patterns</td>
<td>✔</td>
</tr>
<tr>
<td>Normalize Patterns</td>
<td></td>
</tr>
<tr>
<td>Verbosing</td>
<td>✔</td>
</tr>
</tbody>
</table>
3.1 Experimental Set-up

- Three-step process:
 - 1. find best extraction algorithm
 - 2. extract features
 - 3. cluster with SOM

- Three corpus sizes:
 - Three small corpora: approx 20 files
 - Three medium corpora: approx 100 files
 - One large corpus: 1,554 files

Overall corpus:
- 1,914 files
- 8.07 Gigabyte
- 160 hours playtime

German Top-100 from 1990 to 2005
3.1 Experimental Set-up

• GA settings:

• 50 generations
 – Early stopping criterion: stop if no significant change in 10 successive generations

• Individuals per gen:
 – Three times the corpus size
 – Minimally 100 inds

• Mutation probability: 0.2
• cross-over probability: 0.5
3.1 Experimental Set-up

- SOM settings:
 - $n \times m$ matrix, $n,m > 1$
 - Open topology
 - 1000 training runs
 - Learning rate winner neuron: 1
 - Learning rate neighbors: 0.25
3.1 Experimental Set-up

- Distance metric:

\[
d(x, y) = \lambda \sqrt[n]{\sum_{i=1}^{n} |x_i - y_i|^\lambda} \quad \lambda \in \mathbb{R}
\]

Equation 1. Minkowski Distance.

With \(\lambda = 1 \): Manhattan Metric, \(\lambda = 2 \): Euclidean Distance.

\[
d(x, y) = \sum_{i=1}^{n} (1 + m)
\]

\[
m = \begin{cases}
0 & x_i = y_i \\
1 & \text{else}
\end{cases}
\]

Equation 2. Nominal Distance.

(according to Schedl et al, 2005, no superiority of a metric exists)
3.1 Experimental Set-up

- User was asked to evaluate performance of clustering process

- User was given the resulting suggestions (i.e. The list of files which are potentially perceptionally similar to the Query File)

- 22 year old German college student with no background in music or music theory

- Ask to evaluate each song in list according to it's similarity to the Query File

- 6-point scale
3.2 Results

- Very good results!
- 77% peak accuracy
- 67.3% average accuracy
 - Files received a rating of at least 4 or 5 by human user
- 34.3% false positive
 - Files received a rating of less than 3
- 17% average false negatives (forgotten files)
 - Files, not in the cluster of the QF, but received a rating of 4 or higher

- Clustering performance increases with increasing corpus size
3.2 Results

- GA did not contribute to good performance.
- Generic feature sets provided comparable results.
- Best SOM performance when number of neurons is 30% of the number of files.
Table 1. Similarity Cluster for “Nothing else Matters” by Metallica.

<table>
<thead>
<tr>
<th>Similar Songs in Cluster (ranking):</th>
<th>Similar songs not in cluster (ranking):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elton John & George Michael</td>
<td>Band Ohne Namen</td>
</tr>
<tr>
<td>Don’t Let The Sun</td>
<td>Take my Heart (5)</td>
</tr>
<tr>
<td>Go Down on Me</td>
<td>Highland Bella Stella (5)</td>
</tr>
<tr>
<td>Garland Jeffreys</td>
<td>Echt (5)</td>
</tr>
<tr>
<td>Hail Hail</td>
<td>Die Ärzte Wie Es Geht (5)</td>
</tr>
<tr>
<td>Rock ’n Roll</td>
<td>Die 3. Generation</td>
</tr>
<tr>
<td>Michael Jackson</td>
<td>Ich will, dass</td>
</tr>
<tr>
<td>Heal the World</td>
<td>Du mich liebst (5)</td>
</tr>
<tr>
<td>Youssou N’dour & Neneh Cherry</td>
<td>Laura (5)</td>
</tr>
<tr>
<td>7 Seconds</td>
<td>Reamonn Supergirl (4)</td>
</tr>
<tr>
<td>Meat Loaf I’d Do Anything for Love</td>
<td>Orange Blue She’s Got That Light (4)</td>
</tr>
<tr>
<td>Young Deenay Walk On By</td>
<td>R Kelly If I could Turn back Hands of Time (4)</td>
</tr>
<tr>
<td>Thomas D Liebesbrief</td>
<td>Sisqo The Thong Song (3)</td>
</tr>
<tr>
<td>Christina Aguilera Beautiful</td>
<td>Rednex Spirit of The Hawk (3)</td>
</tr>
<tr>
<td>Coldplay Speed Of Sound</td>
<td>Santana Maria Maria (3)</td>
</tr>
<tr>
<td>Hypertraxx The Darkside</td>
<td>Madonna Music (3)</td>
</tr>
<tr>
<td>Nelly Furtado</td>
<td>Madonna American Pie (3)</td>
</tr>
<tr>
<td>I’m Like a Bird</td>
<td>Sting Desert Rose (3)</td>
</tr>
<tr>
<td>Atomic Kitten</td>
<td>Gabrielle Rise (3)</td>
</tr>
<tr>
<td>It’s OK</td>
<td>Anastasia I’m Outa Love (3)</td>
</tr>
<tr>
<td>Daniel Bedingfield</td>
<td>Manu Chao Bongo Bong (3)</td>
</tr>
<tr>
<td>If You're Not The One</td>
<td>Music Instructor feat. Dean Super Fly (3)</td>
</tr>
<tr>
<td>Nomad</td>
<td>(results truncated)</td>
</tr>
<tr>
<td>I wanna give you devotion</td>
<td></td>
</tr>
<tr>
<td>Salt ’n Pepa</td>
<td></td>
</tr>
<tr>
<td>Lets Talk about Sex (3)</td>
<td></td>
</tr>
<tr>
<td>Ace of Base</td>
<td></td>
</tr>
<tr>
<td>Don’t Turn Around (3)</td>
<td></td>
</tr>
<tr>
<td>Dune</td>
<td></td>
</tr>
<tr>
<td>Hardcore Vibes (3)</td>
<td></td>
</tr>
<tr>
<td>Chris Brown Run It (3)</td>
<td></td>
</tr>
<tr>
<td>Dru Hill How Deep is Your Love</td>
<td></td>
</tr>
<tr>
<td>J-Kwon Tipsy (2)</td>
<td></td>
</tr>
<tr>
<td>Color Me Badd</td>
<td></td>
</tr>
<tr>
<td>I Wanna Sex You Up (1)</td>
<td></td>
</tr>
<tr>
<td>Cher Believe (1)</td>
<td></td>
</tr>
<tr>
<td>Interactive Living</td>
<td></td>
</tr>
<tr>
<td>Without Your Love</td>
<td></td>
</tr>
<tr>
<td>Wolfgang Petry</td>
<td></td>
</tr>
<tr>
<td>Die Längste Single der Welt (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Discussion

- Very promising results
- Allows for decrease in search space for manual file comparison
- Search space dynamically structured
- Design allows for ad hoc-clustering
 - (i.e. Extracting features of new files and adding them to the cluster without repeating the whole clustering process)
4. Discussion

- Poor GA performance!
- ga can be left out of the clustering process
 -> decreases time and space complexity
- But:
 - Generic feature set should be designed for SOM clustering specifically
 - SVM approach still outperforms in classification tasks, yet clustering tasks are promising
4. Discussion

- System is useful for:
 - Disambiguate music libraries
 - Help research in music theory
 - Find similarity relationships between songs
 - Find more music according to user preference
 - Visualize music style distribution of cross-over genres, artists and alike
5. Future Work

- Conduct more thorough user rating
- Design a more stream-lined extraction algorithm for SOM clustering
- Test performance on wider range of music style
- Develop a standalone application from plug-in
Any Questions?

Thank you for your attention!